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COMMENT 

A-B droplets for a two-dimensional antiferromagnetic Ising 
model in external field H 

C Amitrano, F di Liberto?, R Figarii- and F Peruggi+ 
Istituto di Fisica Teorica, Mostra d’oltremare, Pad 19, Napoli, Italy 

Received 7 March 1983, in final form 11 May 1983 

Abstract. The A-B site-bond percolation in the antiferromagnetic Ising model in an 
external field H is studied with the infinitesimal Migdal-Kadanoff renormalisation group. 
It is shown that for H = 0 the clusters of holes and particles diverge at the Ising critical 
point K = K ,  with the bond concentration pB in the range 1 -exp( - IK,//2) C PB S 1 as 
in the Coniglio-Klein model. 

For H # 0 the thermal antiferromagnetic critical line coincides with the percolation 
lines for a wider range of pB, i.e. pBm,,(K) S p , i K ) s  1 where pB,,,(K)< 1 -exp( - IK//2) .  

The correlated percolation problem has been widely used in the area of critical 
phenomena (see e.g. Stoll and Domb 1979, Stauffer 1979, Essam 1980, Kertesz et a1 
1983). 

The site-bond correlated percolation is a generalisation of the correlated percola- 
tion. It provides a geometrical interpretation of the Ising critical droplets (Fisher 
1967, Bruce and Wallace 1981, 1982). It has been studied both in the case of equal 
particles (A-A percolation) (Coniglio and Klein 1980, Coniglio et a1 1982b) and for 
particles of different type (A-B percolation) (Coniglio et a1 1982a). 

In the A-A site-bond correlated percolation the clusters in an attractive lattice 
gas or ferromagnetic Ising model are defined as the maximal sets of nearest-neighbour 
particles connected by active bonds; the probability of a bond being active is pB and 
non-active 1 -pB.  

It has been shown that this type of cluster diverges at the Ising critical point in 
any dimension d with Ising exponents, provided that pB = 1 where K is the 
nearest-neighbour coupling constant (Coniglio and Klein 1980, Heermann and Stauffer 
1981, Ottavi 1981, Roussenq 1981, Coniglio et a1 1981, di Liberto et a1 1983). 

These special clusters (‘droplets’), however, diverge also along a line which is in 
the region where the external field, H,  is H > 0; in this region no singularities are 
expected in the thermal free energy. 

For a repulsive lattice gas ( K  < O )  or antiferromagnetic Ising model it has been 
suggested (Coniglio et a1 1982a, Monroy et a1 1982) that for H = 0 the clusters which 
diverge at the critical point with the right exponents are the A-B ‘droplets’, i.e. A-B 
clusters with p B  = 1 

An A-B cluster is a cluster made of nearest-neighbour particles (A) and holes (B) 
with antiferromagnetic order, connected by bonds active with probability pB. At H = 0 
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the A-B percolation problem for a two-sublattice antiferromagnet can be mapped on 
to the A-A problem in the ferromagnetic region, by reversing the spins on one 
sublattice. For this last problem the answers are already known (Coniglio et a1 1981): 
therefore the A-B 'droplets' must have the stated property. 

More intriguing is the case H # 0. It is known that in an antiferromagnet there 
is indeed a line of thermal critical points for H # 0. Do the A-B droplets diverge 
along the thermal critical line? Monroy er a1 (1982) have already shown that this is 
not the case in the Bethe approximation. 

Here we investigate this problem for d = 2 with a new version of the infinitesimal 
Migdal-Kadanoff renormalisation group. 

The A-B site-bond correlated percolation problem can be obtained as the Q = 1 
limit from a suitable dilute Q-state Potts model. This has been shown elsewhere 
(Coniglio et a1 1982a, Monroy et a1 1982); we give here for convenience a brief 
outline of the procedure, to show that the previous definition of 'droplet' (i.e. pB = 1 - 
e-lKllz) is not expected to work at H # 0. 

Let us consider a square lattice of N sites made of sublattices A and B and let a 
site be active if it belongs to sublattice A and is occupied or if it is vacant and belongs 
to sublattice B. 

The interaction between particles is repulsive and due to the Hamiltonian 

-PZLG=K n , n , + A  1 n, 
( 1 . 1 )  I 

I E A  ieAUB 

where n ,  = 1 if site i is occupied, n ,  = 0 otherwise, P = l/KBT, K < 0 is the nearest- 
neighbour coupling constant related to the king constant KI  by KI=K/4, A is the 
chemical potential related to the Ising magnetic field H and the coordination number 
c by -H = $(A -cK/2). The sum E(,,,) is over nearest-neighbour pairs. 

An A-B cluster is made of active sites connected by active bonds, a bond being 
active with probability pB and not active with probability 1 - p B  (figure 1). 

Figure 1. Full circles denote particles and open circles holes. The labels A and B single 
out one of the two antiferromagnetic ground states. Bonds are denoted by wavy lines. 
The case p B  = 1 is reported. The configuration in this figure contains one eight-site cluster 
(three particles and five holes) and one three-site cluster (one particle and two holes). 
Observe that the probability of a bond being active between the other particles and the 
neighbouring holes is zero since these particles are located on the sublattice B. 
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Therefore in the A-B site-bond percolation the average of quantities of interest 
can be written as follows: 

-1  

(. . .)= lim 1 . . . exp(-pxLG) C G E { f l , }  1 p ~ l ( ~ - p ~ ) l ~ l (  (no 1 exp(-pxLG)) (1) 
N + m  {nL) 

where E { n j }  is the set of the bonds in the sublattice made of active sites in the 
configuration {ni} ,  C is a subset of E { n j } ,  D = E { n , } - C ,  IC1 and ID1 are the number 

IC1 of bonds in C and D. Of course for every configuration we have E C E E ( n , ~ p B  
x(l-pe)lDl= 1. 

The probability distribution (1) can be obtained in the Q = 1 and h = 0 limit from 
the following asymmetric (Q + 1)-state Potts Hamiltonian: 

i 
i c A  

where bi = 0, 1, . . . , Q (Coniglio et a1 1982a). 
The Hamiltonian (2) in the Q = 1 limit is equivalent to a two-state Potts model. 

If J = - K / 2  (K < O ) ,  i.e. p B  = 1 -e-lK'/2 , then Hamiltonian (2) becomes a symmetric 
two-state Potts model with ferromagnetic coupling constant IK1/2 and staggered field 
2 H  = - (A  - i d )  which is equivalent to the Ising model with coupling constant IKl/4 
and staggered field H. 

This, on the other hand, is equivalent to an antiferromagnetic Ising model with 
coupling constant - IK1/4 and homogeneous field H which exhibits a line of critical 
points in the H-K plane with Ising exponents. 

Therefore for H = 0 also the clusters of holes and particles connected by active 
bonds with probability pB = 1 - e-IK1/2 should diverge at the antiferromagnetic critical 
point K = K,, with Ising exponents. 

For H # 0 this is not necessarily true. In fact the linear term in H breaks the 
symmetry and again generates (in the renormalisation group language) a term propor- 
tional to 8b,08bi0.  This consideration could invalidate the suggestion that even for 
H # 0 the choice pB = 1 - would have reproduced the features of the 'droplets' 
(Coniglio et a1 1982a). 

The Migdal-Kadanoff renormalisation group (MKRG) approach for Potts models 
has been widely used in the percolation problem (Coniglio and Klein 1980, Coniglio 
and Peruggi 1982, Coniglio et a1 1981). As is already known (Nicoll 1979), the 
Migdal-Kadanoff procedure for a Hamiltonian 

- ~ x  = 1 %(pi, pi), 
( i .1)  

where pi  is a site variable and &i,j) runs over the nearest-neighbour sites, gives rise to 
relations 

T '=  Tb(Tb(@i9 pi)) (3) 

where T(pj ,  pi) = exp %'(pi, gj) and T '  is a matrix whose elements are expressed in 
terms of the renormalised Hamiltonian X' (p , ! ,  p ; ) ,  i.e. T' (p , ! ,  p j )  = exp x'(p,!, p ; ) .  
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The right-hand side of relations (3) is the product of b matrices T, the elements 
of which are T b ( w I , k J )  with b as scaling factor. In the infinitesimal MKRG, b is 
infinitesimally near to 1. 

In our case Hamiltonian (2) depends on A and B sublattices; therefore we have 
to modify the general procedure and define the two asymmetric matrices 

(Ti ) I ,  = T b ( @ 1 7  F J ) ,  CT: 1 1 ,  = Tb(11,, CL,). 

These enable us to write the renormalisation relations 

T‘ = T: (T:T: ) b ’ ,  6 ’  = i ( b  - 1). 

In the Q = 1 limit and for an h = 0 ghost field the diagonalisation of these matrices 
gives the following recursion relations: 

(4a 1 
(46 1 

W ’  = [ W  b ( V  + a )  + T ] / ( T  + a  - V ) ,  

y ’  = W b y b [ ( V  + 8 )  + Y - b W - b T ] 2 / [ W b ( V  + 8 )  f T ] [ T  +a  - V I ,  

x ’ =  1 - ( 1 - ~ ~ ) 2 ( ~ ~ ~ + 4 ) ~ ’ ~ / @ [ ( / ~  + c ? ) + ~ - ~ w - ~ T ] ,  (4c ) 

and where w = e-H, y = e  -K = e  IKI , x = e-J, w’= e-H’, y ’ =  elK”, x ’  = e-J’ 

2 y b w b  + 1 + w 2 b  E + (a2  + 4 p 2  b’  
b 

W -1 
b 2 b / 2 ,  E =  y b ’ 2 W b / 2 ( W b  + 1) ’ G ’ = (  E- (a2+4)  I/,) ’ 

W l Y  
b / 2  b / 2  v = a (  G’- l), 6 = ( c ~ ~ + 4 ) ~ ’ * ( G ‘ + l ) ,  T=2W y (Gr - l ) ,  

@ = (1 + w ~ ) [ E  - ( ~ ~ ~ + 4 ) ~ ’ ~ ] / 2 w ~ ’ ~ y ~ ’ ~ ( l  - x ~ ) ~ .  

We point out that as in the ferromagnetic case also here the renormalisation equations 
for y and w are decoupled from the x equation. 

Equations (4a) and (46) which describe the thermal behaviour give the following 
relevant fixed points in the H-K plane: 

(1) H = ;(A -id) = 0, Kc = -4/KONSI, 
where JKONSI =$In(&!+ 1) = 0.4407 with the following scaling powers: 

y H = ( ) =  0.12, y K , =  0.75, 

which describe the critical behaviour at H = 0, K = K,; 
(2) the spurious fixed points 

H* = *0.7844, K * =  -2.1015, 

with scaling powers 

Y H *  = 0.06, Y K *  = 0.66, 

which describe the critical behaviour on the phase boundary for H # 0. 
However, it is believed that there is only one critical behaviour all along the phase 

boundary, including H = 0. The presence of the spurious fixed point, which is also 
found by Coniglio er a1 (1981) and Mujeeb and Stinchcombe (1982), is presumably 
due to the Migdal-Kadanoff approximation. 

At H = 0, K = K ,  there are three fixed points: J2  = iKc = ~ K o N ~  = 0.8814, J1 = 0, 
J3=3.3068. The fixed points J1 and J3 are stable in the J direction. The scaling 
power at J2  is y J ,  = 0.50. 
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The fixed point Jz describes the critical behaviour of the Ising A-B droplets which 
diverge with Ising exponents. The fixed point J3 describes percolation at the king 
critical point for 

< p B S l .  ( 5 )  1 - e-IRl/2 

Therefore we find that for H = 0 the A-B clusters diver e at the antiferromagnetic 
critical point for all the values of pB in the range 1 -e-'"'SpBS 1. For all these 
values the connectedness length exponent and the correlation length exponent coincide 
because of the decoupling of equations (4). The A-B droplets are defined only for 
pB = 1 - e-lKl/' because only for this particular choice of pB do the cluster size exponent 
and the thermal susceptibility exponent coincide (Coniglio and Klein 1980). 

All these results are expected because of the mapping of the A-B percolation 
problem onto the A-A percolation problem in the ferromagnetic region, as pointed 
out before. However, they are a useful test for the Hamiltonian (2) and the related 
equations (4). In addition to that, we find at H = 0 and K = - o;, a fixed point J4 = 0.693 
which corresponds to the pure random bond percolation (i.e. pB = 0.5).  The percolative 
critical line for this value of pB is at T = 0 (i.e. 1/IKI = 0) on the H / K  axis, inside the 
phase boundary (figure 2).  The scaling power at this fixed point is yJ ,  = 0.61 which 
implies a connectedness exponent vp = yi: = 1.63. This point describes all the percola- 
tive transitions which occur inside the phase boundary. 

I \ I 
0 1  0 2  0557 0 1  0 2  0'567 

l i lK I  1 i lK I  

Figure 2. ( a )  The A-B percolation critical lines for p B ( K )  in the range pBm,"(K) S p , ( K )  < 1 
coincide with the antiferromagnetic phase boundary. The antiferromagnetic phase boun- 
dary can be regarded as a function of T (i.e. 1 /K) which goes from H = 0 at T = T,  to 
H = f H ,  at T = 0. ( b )  pB,, .(K) together with p B  = 1 is reported as a function 
of 1/K. For each K the percolation critical point coincides with the phase boundary point 
H ( T )  for pe in the range pBm,,(K)=zpBs 1. 

For H f 0 we find that the thermal antiferromagnetic critical line coincides with 
the percolation line for a range of pB wider than that given by relation ( 5 ) .  In fact, 
at the spurious fixed point H = H* and K = K* we find the fixed points 

Js = 0, J6= 0.8613, J7 = 3.4439. 
J6 is unstable; it is the analogue of J2 at H f 0 but it is smaller than lK*1/2. 
In figure 2 we give the ~B,,.(K) such that the percolation line for p B ( K )  in the 

range pB,,"(K) = s ~ B ( K )  s 1 coincides with the phase boundary. In this figure we report 

Finally, because of the decoupling of equations (4), we have that the connectedness 
length exponent is given by y K! for PB~ ," (K)  S ~ B  G 1. N o  analysis has been made for 

for comparison p~ = 1 -e-'Kl/2 too. Except for K = K ,  we have pB,,,< 1 -e  -IKI/2 . 
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the mean cluster size exponent, but we expect that the percolation exponent yp is the 
thermal Ising exponent y~ only for ~ B ( K )  =PB,,,(K). 

The results obtained here lead us to the following conclusions. The A-B droplets 
made of nearest-neighbour particles (A) and holes (B) connected by bonds active with 
probability pB = 1 - e-'Kl/z diverge with the right exponents if H = 0 as in the Coniglio- 
Klein droplet model. 

For H # 0 the thermal antiferromagnetic critical line coincides with the percolation 
lines for p B  in the range pB,, , (K)  s p B ( K )  s 1 where pB, , , (K)  < 1 Therefore 
the extension of the Coniglio-Klein droplet model at H # 0 is obtained for the choice 

For three dimensions we expect that at H = 0 the A-B droplets are obtained for 
PB = 1 - e-1Rl/2 , but at H # 0 the pB(K) would not be such a simple function. Therefore 
the resulting percolative phase diagram for three dimensions would be similar to that 
found for the Bethe lattice (Monroy et a1 1982). 

pB(K) =PB,,,(K)* 
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